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Abstract

In this paper, an accurate method, using a novel immersedeaoy approach, is presented for nu-
merically solving linear, scalar convection problems. $\standard in immersed-boundary methods,
moving bodies are embedded in a fixed Cartesian grid. Thenessd the present method is that
specific fluxes in the vicinity of a moving body are computedrinintelligent way such that they ac-
curately accommodate the boundary conditions valid on txmg body. The first results obtained
are very accurate, without requiring much computationarbgad. It is anticipated that the method
can be easily and successfully extended to real fluid-flovataojus.

1 Introduction

In this paper, we consider numerical solutions of the ihitedue problem for hyperbolic conservation
laws. A novel immersed-boundary method for solving adweectiroblems is presented. The immersed-
boundary method, in general, is a method in which boundangitions are indirectly incorporated into
the governing equations. It has undergone numerous mdibfisa ever since its first introduction by
Peskinin 1972 [1], and currently many varieties of it exéstd [2] for a review and the references therein
for details). Immersed-boundary methods are very suitablgimulating flows around flexible, moving
and/or complex bodies. Basically, the bodies of interesfast embedded in non-deforming Cartesian
grids that do not conform to the shape of the body. The gomgraguations are modified to include the
effect of the embedded boundaries.

Our approach uses a cell-centered finite-volume discte&iizaThe governing partial differential
equations are discretized using a standard finite-volunteadeway from the embedded body. Near the
embedded body, a special finite-volume method is derivediwtaikes the prescribed interior boundary
conditions into account. Doing so, mesh (re)generatioficdifies associated with body-fitted grids,
are obviated; and, the underlying regular fixed grid allowsaiuse a simple data structure as well as
simpler numerical schemes over a majority of the domain.

The outline of the paper is as follows. $12, the problem is described and some standard finite-
volume results are presented. The special fluxes which kekeftects of the embedded boundaries into
account are derived ify 3; and in§ 4, the temporal integration is explained. §r5, some numerical
results, based on the present approach, are given, ang fioaltluding remarks are presentedié.

*The first author’s research is funded by the Delft Centre fmm@utational Science and Engineering.



2 Problem description

2.1 Model equation and target problems

The one-dimensional, linear advection equation is:

ot Ox

0c L1 _y fo)=ue, (1)

wherec (z,t) is the scalar field and(c) is the flux function, which is linear. Equation (1) is a model
of quantityc (z, t) that is advected by the velocity, which is constant, and which we assume to be
positive. The independent variablesindt represent space and time, respectively. The generic domain
of the solution is a one-dimensional rod, of lendth Here, we take the domain to be of unit length,
L=1, on theintervak € [0, 1].

The advection equation (1) is the simplest partial difféedrequation, but it is an important one, as
it models fluid-flow equations. It is hyperbolic with a singlket of characteristic lines. For a given initial
solutione(z, 0) = co(x), the exact solution of (1), at any locatierand timet, can be computed by the
method of characteristics, ate, t) = co(z — ut). The initial data simply propagates unchanged with
the velocityu.

Two initial solutions are considered, each with two interiooving boundaries. The solution at the
left and right of each interior boundary is prescribed. Twe mmoving boundaries have arbitrary initial
locations 1 andzs, 1 # z2). The two solutions, in formulae, read:

0, if 2y <o <z,

Co(l‘) = and Co(.’l?) = {1—cos(27rm) (2)

1, elsewhere;

0, ifzy <z <umo,
5—, elsewhere.

The initial solutions are able to distinctly rank out thefeliént numerical schemes based on their ac-
curacy. The cosine function in (2) exploits the advantage tligher-order accurate numerical schemes
have in non-constant, smooth solution regions.

The model equation is approximated in a periodic domaiowatg us to time-step for as long as
we want for a finite spatial domain.

Hence, by using the exact solution as a benchmark, numetonsncal schemes can be developed
and tested for the one-dimensional, linear advection éoyuafixed-grid finite-volume methods for ad-
vection problems with interior, embedded moving boundaaiee underdeveloped. No rigorous studies
exist about numerical properties as accuracy and monatynic this paper, some finite-volume meth-
ods for discontinuous moving interior boundary problem8 ke derived, analyzed and tested. The
moving interior boundary conditions will be embedded infinges in the direct neighborhood.

2.2 Finite-volume method and standard schemes

The unit domain is divided int&V non-overlapping control volumes of uniform size, with thigize
beingh = 1/N. A single node is located at the geometric centroid of theérebmolume and the cells
are represented with nodal indices. The coordinates ofdkesiare determined as= (i — 3)h, i =
1,2, ..., N. The coordinates of the cell faces are labeled by indiceb-fmactions:xi+%, 1=1,2,...,N.

Denoting the discrete solution in céllat time leveln, asc! = c(z;,t"), which is assumed to be
constant in that cell and at that time, the semi-discreteefimblume form of (1) reads:

de;

h
dt

(=)o @
Equation (3) is exact so far. It is going to be solved by apjmating the fluxes at the cell faces and by
time-stepping the temporal part.
The flux across cell face+%, at time leveln, is computed (dropping the time index for conve-
nience) asfH; = uc;, 1, wherecH; is the cell-face state at+ 1, which can be approximated in a
2 2 2



variety of ways. For example, far > 0, ¢, 41 =G andc; 41 =G + 55 (e — i) + (e — i)
are two classical cell-face states, computed with thecﬂrdér upwind scheme and van Leet'scheme
[3], respectively. Note that, with no embedded boundarhereighborhoods € [-1,1]. Fork = 1
and—1, we have the second-order accurate central and fully upschdmes, respectively. And for the
unique values = % we have a third-order net-flux accuracy in each cell.

The simplicity and monotonicity of the first-order upwincheme are appealing, making it a robust
scheme. However, it has strong numerical diffusion. On therchand, the solutions of attschemes
exhibit wiggles in the vicinity of discontinuities. Thisaalls Godunov’s theorem [4] which states that
there is no linear scheme higher than first-order accurdtgghais monotone. Several algorithms have
been proposed in the literature that yield higher-ordeueate solutions which are free from wiggles.
Most of these algorithms exploit the inherent monotonioityhe first-order upwind scheme. The best
known representatives of these algorithms are the limitdeimes following Sweby’s total-variation
diminishing (TVD) theory [5].

The cell-face state dt+ 2 can be rewritten in the limited form ag, 1 =ci+ + 1(r Tipl 1) (¢ — ¢i—1),

whereg(r) is the limiter function andt;, 1 = ?“C “ is its monotonicity argument. Here we specifically
2 11—
adopt the limiter proposed by Koren [6] as the standard #mit gives a monotone third-order accurate

net flux in a cell by resembling the = %-scheme, and is defined as:

0, if r <0;
2, ifo<r<i
B =41, ik @)
3t3n Tzsr<iy
2, otherwise.

In the remainder of this paper, we will derive non-standariti€ivolume methods, methods in which
the interior boundary conditions are incorporated in thedigrid flux formulae. Before doing so, for
later comparison purposes, we will show what the solutioesa the standard finite-volume discretiza-
tions described above, methods in which no embedded-bopodaditions are imposed, pure capturing
methods, in fact. For the time integration, the three-siRgege-Kutta scheme RK3b from [7] is em-
ployed. For both initial solutions given in (2), we considlee locations of the embedded bodies to be
atz, = % andzy = % Furthermore, we take = 1, and we compute the solution@at= 1, the time
at which the solution has made a single full-period. For kbthfirst-order upwind and the = %
(unlimited and limited) schemes, the computations areogperéd on a grid with 20 and 40 cells. The
solutions are depicted in Figure 1. The time steps have ladem tsufficiently small to ensure that in all
cases the time discretization errors are negligible wisipeet to the spatial discretization errors.

(a) On a 20-cell grid (b) On a 40-cell grid

Figure 1: Standard finite-volume solutions after one fetipd, for the initial solutions (2). Red: exact
discrete, blue: first-order upwind, green: unlimited higbeder upwind-biased, and black: limited
higher-order upwind-biased.



3 Fluxes with embedded moving-boundary conditions

3.1 Higher-order accurate embedded-boundary fluxes

The sharp discontinuities of the initial solutions (2) anesidered as infinitely thin bodies going with the
flow and the boundary conditions associated with these abedded in the fixed-grid fluxes. We speak
of embedded bodies (EBs). Here, the embedded-boundarijtiomsdare user-specified and enforced to
remain intact to the EB and unchanged at all times. The swlwilues on the left and right sides of the
EB are designated a4y andckg, respectively (Figure 2).

) r
CEB | CEB

Figure 2: EB situated in cellat timet, its associated solution values, and the affected cedl-§tates.

For an EB situated in cel| with its coordinatecgg = zgg(t) given, its relative position with respect
to the left face of the cell i8h, see Figure 2, wherg € [0, 1] is a (non-dimensional) parameter which

is defined as:
TEB — T;_1

f=— 2. (5)

So,5 =0 when the EB is at cell face- % b= % when the EB is in the centroid and5 =1 when the
EB is at cell face + 1.

There is no information flow across the EB. Fluxes on one sidiesoEB are all computed based on
the information on that side of the EB and the additionalrioteboundary condition on the respective
side. In general, when considering three-point upwinddiknterpolation for the fluxes, three cell-face
states, ViZci_%, Cit1 andci+%, are affected by the presence of a single EB (indaind these are the
cell-face states of interest that will be modified. Thesedglsell-face states are computed such that the
net fluxes in the neighboring cells are as accurate as pes$bl far, it is assumed that two successive
EBs are sufficiently far apart that a given flux is affected biy@mne EB. Recall that all but the affected
fluxes are computed based on the standasgdheme discussed §.2.

In principle, all the special cell-face states are writtenerms of the blending parameteand are
computed from optimally blended, three-point upwind-b@sterpolation formulae. However, for cell-
face state; 41, NO upwind-biased interpolation formula can be derived aglo not draw information
across the EB Hence, no blending parameter to be optimizéuki formula forc, +1s and only non-
equidistant central interpolation is applied to comm,g;e% ie.,

r 2— 25 r
Ciry = BB T 35 (Cit1 — cEp)- (6)

In the formulae fok;, 1 andc, i3 there will be blending parameter@Lé andc; i3 can be taken as op-
timally weighted averages of two- -point central interpiglatand two-point fully- upwmd extrapolation.

The net fluxes of cells-1, 7, i+1 andi+2 are affected by the EB. Because onlly% anch% allow
for optimization, only two of the four aforementioned netldkixes can be optimized for accuracy:
either the net flux in celi—1 or cell¢, for c; 1 ; and either the net flux in celk-1 or celli+2, forc,

For the accuracy optimizations, Taylor series expansiogsised. Doing so, the net flux in ceII
cannot be optimized due to the presence of the EB with itodigauous solution behavior. Hence, the
net flux in celli — 1 will be optimized forc; 1 Secondly, fOfCH_s, the net flux in celt +2 will be
optimized. The reason why the net flux in call2 is optimized instead of that of cell- 1 is explained
at the end of this subsection.



Deriving the three-point upwind-biased interpolation éor ., in terms of the blending parameter
2
K;_1,We get:
2

(2

1 l+m1 1 -k, 1
¢ 1 =Ci1 + 1525 5 2 (kg —Ci-1) + TZ(Ciq —¢i2). (7)
Note that forg = % the standar@-scheme is restored from (7). Then writing the modified eiquéor
celli—1, introducing successive Taylor series expansions abeyidinti—1, and equating the leading
term of the truncation error to zero, we get:

Ry 1= %, Ry 1 € [%,g] . (8)
Following the same procedure fqgrg, i.e., taking:
L+ R, 2 Ll—hys
Cipg = Cit1+— 2 (ciya — cin) + 3 95 4 (Gt~ CEB) (9)
we get the highest accuracy in celt 2, for:
Fips = 175 _66%’ Kits € E, 1—75] ) (10)

Ri 1 ands;, 43 according to (8) and (10) are well within the standard rarge 1]. They yield the most

1—

accurate net Hluxes in cells- 1 andi+2; we have second-order (spatlal) accuracy in these celis,avi
maximum leading-term truncation-error coefﬂment@% andigﬁ, respectively. These are dispersive
terms and they diminish as the EB is in the immediate vicioftthe center of ceH We get third-order

accuracy in the respective cells when the EB is exactly atéimeer, i.e.,fog = 5, k., 1 = Rips = %
2

)

The final formulae for the special cell-face states that #exiwd by the presence of an EB in cell
1, are summarized, in terms of the location paramgiers:

8 I 1460
i1 =¢Ci —ci = oalCi-1—¢ci2), 1la
szé c 1+(3+65)(3+25)(CEB & 1)+18+125(C 1—C 2) ( )
2—20 .
Ciy1 = Cgp + m(ciﬂ — CEB); (11b)
11 -6 4 .

Finally, the reasons why the optima], s is obtained from the highest accuracy of the net flux in
2
cell i42, instead of that in cell+1, are the following:

. K3 from the former case is well within the standasdange[—1, 1] ( see (10)), but from the later

case, e gef, s € 3, 2.

. We get a third-order (spatial) accuracy in cef2 in the former case fof = % (see (10)), but in the
later case, we do not get this for agly

. Noting the solution is discontinuous across an EB, from tmér case, we have a dissipative leading-
error term in celi+1, which is the adjacent cell to celllwhere the EB is situated), and this makes
the solution near the EB less prone to numerical oscillatidn the later case, however, we get the
leading-error term in the same cell to be dispersive anchtlaises the solution near the EB to be more
susceptible to numerical oscillations, numerical ostidlas which may be hard to suppress because
construction of a flux limiter for cell face+% is hard.

. In the former case, we get first-order (spatial) accuracelhie- 1, and second-order accuracy in cell
1+2; whereas, in the later case, we get second-order accurae}l in+ 1, and first-order accuracy in
celli4+2. Therefore, the accuracy deterioration due to the presafren@ EB in celli is confined to the
vicinity of the EB.



3.2 Spatial monotonicity domains and limiters

Recalling Godunov's work [4], all the linear higher-ordendés, constructed earlier, may yield wiggles.
And these wiggles may cause the solutioto be negative. I is a physical quantity that should
not become negative (say, density or temperature), thisdssirable. Therefore, a physically positive
guantity should remain positive during the course of theérergolution process. Positivity af can
be achieved by carefully constraining or ‘limiting’ the aattive fluxes calculated by the scheme. By
limiting the fluxes, they may persist to be first-order actaiia some solution regions. For the cell-face
states that are computed by the standard % scheme { 2.2), the standard = % limiter (4) will be
used.

In this section, special limiters will be introduced for tsgecial EB-affected cell-face states 1 1
andc; 43 according to formulae (11a) and (11c). For cell faeei, a regular monotonicity argument

1 can not be defined, as a regular monitor uses two solutioresalpstream of cell faces. In this
case since we do not want to use solution values from the sithe of the EB, and therefore ngt we

have only one upstream solutiafjy;, too little to introduce the regular smoothness monitoer€ffore,
1 will not be limited.

The formulae for; 1 andc, s in (11) can be rewritten as:
2

+

1- . 1 -~ N
Ci—1 = Ci-1 + §¢(7'i_%)(ci—1 —cj—2) and Cit3 = Cit1 + m¢(ri+g)(0i+l —cgg), (12a)
where:
. 1+68 8 - 4 11— 64
) = ) . = . 12
i) =95 6g Togep -t A4 lny) = pogpt oty (12D
and where:

3— 28 ciyo — ci
and 7,5 = Beiva = Cit1 (12c)

2 Ci+1 — C;]B

l
l prm—
2 1+ Qﬁ Ci—1 — Ci—2

ri_

The functionqg(f) will be constrained to yield monotonicity preserving sclesrand to define the appro-
priate limiters. The argumertmeasures the local monotonicity of the solution. Noticd tbas =
T 1 andr, i3 reduce to the standard equidistant local successive gpigtiadient ratios known from
the theory of standard limiters.

To constrainp(7 l") enforcing the monotonicity requirements:

[

C,_L —C_3 CEB — Cl_l
i B R ) (13)

Ci—1 —Ci—2 CgB — CGi—1

we get: ]
1- 10(ri_s) 1 (1)
1+ =¢(7, - Z > nd 1-— Z > 14
i) — g 20 A L 20 (14)
2 2

respectively. The standard limitex(r) already satisfiegd — %‘bgf") > 0, Vr. Therefore, the above
(in)equalities reduce to:

qﬁ(fi_%) >0, Wi_% and qs(fi_%) <(1+ 26)@._%, Vfi_% > 0. (15)
Similarly, to constrainﬁ(FHg), enforcing the monotonicity requirements:
2

Civd — Citd — Gyl

+
Z2>0 and

—— > 0, (16)
Ci+1 — CEB Ci+2 — Cit+1



we get as restrictions fq}(fi+%):
~ &(FH%) -
gb(?“H_g) > -1 and —~ <2, VT’H_%. @an

2 Titd

The (in)equalities (15) and (17) partially define the spatianotonicity domains for the special
limiter functionse(7, 1) andqb(fH%). Upper bounds for both limiters are still to be derived ih.2.

1
2

4 Time integration

4.1 Temporal discretization

Semi-discrete equation (3), after substituting the appatg discretizations for the spatial operator, is

compactly written as:

de; U .

o = 7 —a) = F). (18)
Equation (18) can be integrated in time, using a variety pfieit and implicit time-integration methods.
Here, only two explicit schemes are considered: the Fonkzaldr and RK3b [7] schemes. The later
gives a third-order accuracy in time.

For the Forward Euler method, (18) becomes:
M= TR (M) = v(ct 1 —cl 1), (19)
2 2

wherev = 4T is the CFL number, and the time step. Similarly, for the RK3b scheme, we have:

7

1
it =} + (R + Ry + 4Ry), (20a)
where theR;’s (j =1, 2, 3) are internal vectors that are computed as:

1 1
Ri=r F(Cn), Ro=T F(Cn + Rl) and Rz =171 F(Cn + ZRl + ZRQ) (ZOb)

4.2 Monotonicity condition and time step

Higher-order accurate solutions of time-dependent problenay exhibit under- and over-shoots near
discontinuities, as they evolve in time. The limited nuroarflux conditions, as derived 3.2, are still
insufficient to guarantee monotonicity during time integma. Harten'’s theorem [8] provides additional
conditions that are necessary for the convergence of thedidcrete solutions to the exact, monotone
solutions. These conditions define the upper bounds fonirm'ters&(ﬁ_%) and&(FH%).

The theorem in [8] states, any consistent scheme for a caatgmn law written in the conservative
form:

Pt =l — DZ_% (cf —ciq) + D;% (e —cf), (21)
where the D’s are solution-dependent coefficients, is-edahtion diminishing (TVD) if, for alli:
+
DH% >0, (22a)
- +
DH% + DH% < 1. (22b)

To fully constrain the Iimiters%(fifé) and q?(fH%), we consider the Forward Euler scheme and
write the fully discrete equations, in the form (21), forlcet 1, and cellsi+1 and:+ 2, respectively.
After enforcing conditions (22), we then get the bounds efdbomains as:

- D(Fiy2)
> 2ﬁ—l and 4_E§ ML
v v Tit3

0<§(fi1) <> —2, —1<¢(F3) < <2. (23

R0



Note that the above three bounds that contaiollow from the requirement (22b). The other three
bounds (, —1 and?2) follow from the requirement (22a), which is analogous te thonotonicity re-
quirement already considered §n3.2. Concerning the newly deriveddependent boundsﬁ—(— 2,

3 26 —land4 — 2) note that the choice 1 —which, as is known, is the stability bound for Forward
Euler—ylelds¢( Z7_) 0 andqb( ) Ty Hence, withv = 1, the second-order accuracy require-
mentsa (7, 1= =1)=1 and¢( s = 1) =1 cannot be satisfied for both limiters= 3 is the maximum
value that Stl|| allows forp(7 3= l)=1forg=1.

For the cases = % andv < % possible limiters satisfying the requirements (23) argicted in
Figure 3.

<o
L ]

S

T

Figure 3: Typical EB-sensitive limiters and the corresp'ngdnonotonicity domains for the special
cell-face states; _1 (left) andc; 43 (right), for g =

’L——

4.3 Local adaptivity in time

Consider the stencil in thiez, t)-plane in Figure 4. The EB is situated in celit¢” in such a way that it
migrates to the next cedi-1. Apparently, the solutiong® andc?’, ; are updated, in Forward Euler, using
the modified cell-face state§ 1 n+1 andc” i However, as the EB crosses the cell fac&qtl,
there is an abrupt change in th2e state at this face. Thatfrdone crossing, the state at this cell face is
computed based on the data to the right of the EB; wherea&s,th# crossing, it is computed based on
the data to the left of the EB. The two updated solutleﬁhﬁ1 andcfjll, which are mainly affected by

this particular cell-face state, need to ‘feel’ the revéns'mre in particular the abrupt changedn i .
2

t

n+1-+4+

n+a-i-

i—1 i i+1 i+2

Figure 4: Stencil for local adaptivity in time. The standantbdified and the intermediate cell-face
states are designated in green, blue, and red, respectively



Time adaptivity is introduced by first computing the timectian « at which the EB crosses the cell
face atr, 1, as:
2
T, 1+€—Thp
a=-"2 P 4 e(0,1), (24)
uT
wherezf;; is the location of the EB at time levélt. Note that the EB is placed at infinitesimal distance

e off z; 1, in the direction of the flow. Then, after updating the santvalues:? ; andc' to time level
2
n+a, the intermediate cell-face stai;éjf‘ is computed. Finally, the cell-face stai;gl is recomputed
2 2

as the weighted average:

Cn

1= ac?Jr% + (1 — )™t (25)

it
Then using the time-adapted cell-face state, solutiontipgias continued everywhere with the regular
time stepr.

For RK3b, we do not yet resort to the temporal local-adatimiocedure devised above. We instead
split the regular time stepinto smaller time steps, depending on the number of EBs icrgpssll faces,
and update the intermediate solutions everywhere. Farnuost for a single EB crossing a cell face, we
divide 7 into two smaller time stepsT and(1 — «)7.

5 Numerical examples

We present numerical results to validate the immersed-demyrapproach presented in this work. We
take the same data as§e.2, i.e., the same initial solutions (2), initial EB locatsz; = % andzy = %
u = 1, andt.x = 1, on a grid of 20 and 40 cells.

The results obtained, shown in Figure 5, are remarkablyrateu The results show a significant
improvement in resolution, without much computationalrnad, over those computed using the stan-
dard methods, Figure 1. For the more discriminating ing@lltion (the cosine-cavity), the numerical
results of the limited higher-order upwind-biased schearesslightly deficient at the peripheries. This
is due to the property of limiters that they clip physicakfavant extrema. Apparently, the deficiency
becomes smaller with decreasing mesh width.

6 Conclusion

The essence of the present approach is that moving bodiesdnedded in a regular fixed grid and spe-
cific fluxes in the vicinity of the embedded boundary are iigehtly computed in such a way that they
accommodate the boundary conditions valid on the moving.bbDaen, over the majority of the domain,
where we do not have influence of the embedded bodies, we adilyrese standard methods on the
underlying regular fixed grid. Excellent results are acbégwvithout much computational overhead. We
foresee that the numerical methods introduced here caitybadcxtended to higher-dimensional, more
practical and complicated problems, for instance the @astencompressible Euler and Navier-Stokes
equations.
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Figure 5: Immersed-boundary solutions after one full-garifor the initial solutions (2).0: exact
discrete[: unlimited higher-order upwind-biased with Forward Euiedimited higher-order upwind-
biased with Forward Eules; unlimited higher-order upwind-biased with RK3b; limited higher-order
upwind-biased with RK3b.



