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Abstract

In this paper, an accurate method, using a novel immersed-boundary approach, is presented for nu-
merically solving linear, scalar convection problems. As is standard in immersed-boundary methods,
moving bodies are embedded in a fixed Cartesian grid. The essence of the present method is that
specific fluxes in the vicinity of a moving body are computed inan intelligent way such that they ac-
curately accommodate the boundary conditions valid on the moving body. The first results obtained
are very accurate, without requiring much computational overhead. It is anticipated that the method
can be easily and successfully extended to real fluid-flow equations.

1 Introduction

In this paper, we consider numerical solutions of the initial value problem for hyperbolic conservation
laws. A novel immersed-boundary method for solving advection problems is presented. The immersed-
boundary method, in general, is a method in which boundary conditions are indirectly incorporated into
the governing equations. It has undergone numerous modifications, ever since its first introduction by
Peskin in 1972 [1], and currently many varieties of it exist (see [2] for a review and the references therein
for details). Immersed-boundary methods are very suitablefor simulating flows around flexible, moving
and/or complex bodies. Basically, the bodies of interest are just embedded in non-deforming Cartesian
grids that do not conform to the shape of the body. The governing equations are modified to include the
effect of the embedded boundaries.

Our approach uses a cell-centered finite-volume discretization. The governing partial differential
equations are discretized using a standard finite-volume method away from the embedded body. Near the
embedded body, a special finite-volume method is derived which takes the prescribed interior boundary
conditions into account. Doing so, mesh (re)generation difficulties associated with body-fitted grids,
are obviated; and, the underlying regular fixed grid allows us to use a simple data structure as well as
simpler numerical schemes over a majority of the domain.

The outline of the paper is as follows. Inx 2, the problem is described and some standard finite-
volume results are presented. The special fluxes which take the effects of the embedded boundaries into
account are derived inx 3; and inx 4, the temporal integration is explained. Inx 5, some numerical
results, based on the present approach, are given, and finally concluding remarks are presented inx 6.�The first author’s research is funded by the Delft Centre for Computational Science and Engineering.



2 Problem description

2.1 Model equation and target problems

The one-dimensional, linear advection equation is:�
�t + �f(
)�x = 0; f (
) = u 
; (1)

where
 (x; t) is the scalar field andf(
) is the flux function, which is linear. Equation (1) is a model
of quantity
 (x; t) that is advected by the velocityu, which is constant, and which we assume to be
positive. The independent variablesx andt represent space and time, respectively. The generic domain
of the solution is a one-dimensional rod, of lengthL. Here, we take the domain to be of unit length,L=1, on the intervalx 2 [0; 1℄.

The advection equation (1) is the simplest partial differential equation, but it is an important one, as
it models fluid-flow equations. It is hyperbolic with a singleset of characteristic lines. For a given initial
solution
(x; 0) = 
0(x), the exact solution of (1), at any locationx and timet, can be computed by the
method of characteristics, as
(x; t) = 
0(x � ut). The initial data simply propagates unchanged with
the velocityu.

Two initial solutions are considered, each with two interior, moving boundaries. The solution at the
left and right of each interior boundary is prescribed. The two moving boundaries have arbitrary initial
locations (x1 andx2, x1 6= x2). The two solutions, in formulae, read:


0(x) = (0; if x1 � x � x2,1; elsewhere;
and 
0(x) = (0; if x1 � x � x2,1�
os(2�x)2 ; elsewhere.

(2)

The initial solutions are able to distinctly rank out the different numerical schemes based on their ac-
curacy. The cosine function in (2) exploits the advantage that higher-order accurate numerical schemes
have in non-constant, smooth solution regions.

The model equation is approximated in a periodic domain, allowing us to time-step for as long as
we want for a finite spatial domain.

Hence, by using the exact solution as a benchmark, numerous numerical schemes can be developed
and tested for the one-dimensional, linear advection equation. Fixed-grid finite-volume methods for ad-
vection problems with interior, embedded moving boundaries are underdeveloped. No rigorous studies
exist about numerical properties as accuracy and monotonicity. In this paper, some finite-volume meth-
ods for discontinuous moving interior boundary problems will be derived, analyzed and tested. The
moving interior boundary conditions will be embedded in thefluxes in the direct neighborhood.

2.2 Finite-volume method and standard schemes

The unit domain is divided intoN non-overlapping control volumes of uniform size, with the grid size
beingh = 1=N . A single node is located at the geometric centroid of the control volume and the cells
are represented with nodal indices. The coordinates of the nodes are determined asxi = (i � 12)h; i=1; 2; :::; N . The coordinates of the cell faces are labeled by indices-with-fractions:xi+ 12 ; i=1; 2; :::; N .

Denoting the discrete solution in celli, at time leveln, as
ni = 
 (xi; tn), which is assumed to be
constant in that cell and at that time, the semi-discrete finite-volume form of (1) reads:h d
idt + �fni+ 12 � fni� 12� = 0: (3)

Equation (3) is exact so far. It is going to be solved by approximating the fluxes at the cell faces and by
time-stepping the temporal part.

The flux across cell facei+ 12 , at time leveln, is computed (dropping the time indexn, for conve-
nience) asfi+ 12 = u
i+ 12 , where
i+ 12 is the cell-face state ati+ 12 , which can be approximated in a



variety of ways. For example, foru > 0, 
i+ 12 = 
i and
i+ 12 = 
i + 1+�4 (
i+1 � 
i) + 1��4 (
i � 
i�1)
are two classical cell-face states, computed with the first-order upwind scheme and van Leer’s�-scheme
[3], respectively. Note that, with no embedded boundary in the neighborhood,� 2 [�1; 1℄. For� = 1
and�1, we have the second-order accurate central and fully upwindschemes, respectively. And for the
unique value� = 13 , we have a third-order net-flux accuracy in each cell.

The simplicity and monotonicity of the first-order upwind scheme are appealing, making it a robust
scheme. However, it has strong numerical diffusion. On the other hand, the solutions of all�-schemes
exhibit wiggles in the vicinity of discontinuities. This recalls Godunov’s theorem [4] which states that
there is no linear scheme higher than first-order accurate, which is monotone. Several algorithms have
been proposed in the literature that yield higher-order accurate solutions which are free from wiggles.
Most of these algorithms exploit the inherent monotonicityof the first-order upwind scheme. The best
known representatives of these algorithms are the limited schemes following Sweby’s total-variation
diminishing (TVD) theory [5].

The cell-face state ati+ 12 can be rewritten in the limited form as
i+ 12 = 
i + 12�(ri+ 12 )(
i � 
i�1),
where�(r) is the limiter function andri+ 12 = 
i+1�
i
i�
i�1 is its monotonicity argument. Here we specifically
adopt the limiter proposed by Koren [6] as the standard limiter. It gives a monotone third-order accurate
net flux in a cell by resembling the� = 13 -scheme, and is defined as:

�(r) =
8>>>><>>>>:
0; if r < 0;2 r; if 0 � r < 14 ;13 + 23 r; if 14 � r < 52 ;2; otherwise.

(4)

In the remainder of this paper, we will derive non-standard finite-volume methods, methods in which
the interior boundary conditions are incorporated in the fixed-grid flux formulae. Before doing so, for
later comparison purposes, we will show what the solutions are for the standard finite-volume discretiza-
tions described above, methods in which no embedded-boundary conditions are imposed, pure capturing
methods, in fact. For the time integration, the three-stageRunge-Kutta scheme RK3b from [7] is em-
ployed. For both initial solutions given in (2), we considerthe locations of the embedded bodies to be
at x1 = 13 andx2 = 23 . Furthermore, we takeu = 1, and we compute the solution att = 1, the time
at which the solution has made a single full-period. For boththe first-order upwind and the� = 13
(unlimited and limited) schemes, the computations are performed on a grid with 20 and 40 cells. The
solutions are depicted in Figure 1. The time steps have been taken sufficiently small to ensure that in all
cases the time discretization errors are negligible with respect to the spatial discretization errors.
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(a) On a 20-cell grid (b) On a 40-cell grid

Figure 1: Standard finite-volume solutions after one full-period, for the initial solutions (2). Red: exact
discrete, blue: first-order upwind, green: unlimited higher-order upwind-biased, and black: limited
higher-order upwind-biased.



3 Fluxes with embedded moving-boundary conditions

3.1 Higher-order accurate embedded-boundary fluxes

The sharp discontinuities of the initial solutions (2) are considered as infinitely thin bodies going with the
flow and the boundary conditions associated with these are embedded in the fixed-grid fluxes. We speak
of embedded bodies (EBs). Here, the embedded-boundary conditions are user-specified and enforced to
remain intact to the EB and unchanged at all times. The solution values on the left and right sides of the
EB are designated as
lEB and
rEB, respectively (Figure 2).


i� 12 
i+ 12 
i+ 32i� 1 i i+ 1 i+ 2�h

lEB 
rEB x

Figure 2: EB situated in celli at timet, its associated solution values, and the affected cell-face states.

For an EB situated in celli, with its coordinatexEB = xEB(t) given, its relative position with respect
to the left face of the cell is�h, see Figure 2, where� 2 [0; 1℄ is a (non-dimensional) parameter which
is defined as: � = xEB � xi� 12h : (5)

So,�=0 when the EB is at cell facei� 12 , �= 12 when the EB is in the centroidi, and�=1 when the
EB is at cell facei+ 12 .

There is no information flow across the EB. Fluxes on one side of the EB are all computed based on
the information on that side of the EB and the additional interior boundary condition on the respective
side. In general, when considering three-point upwind-biased interpolation for the fluxes, three cell-face
states, viz.
i� 12 , 
i+ 12 and
i+ 32 , are affected by the presence of a single EB (in celli) and these are the
cell-face states of interest that will be modified. These three cell-face states are computed such that the
net fluxes in the neighboring cells are as accurate as possible. So far, it is assumed that two successive
EBs are sufficiently far apart that a given flux is affected by only one EB. Recall that all but the affected
fluxes are computed based on the standard�-scheme discussed inx 2.2.

In principle, all the special cell-face states are written in terms of the blending parameter� and are
computed from optimally blended, three-point upwind-biased interpolation formulae. However, for cell-
face state
i+ 12 , no upwind-biased interpolation formula can be derived as we do not draw information
across the EB. Hence, no blending parameter to be optimized in the formula for
i+ 12 , and only non-
equidistant central interpolation is applied to compute
i+ 12 , i.e.,


i+ 12 = 
rEB + 2� 2�3� 2� (
i+1 � 
rEB): (6)

In the formulae for
i� 12 and
i+ 32 , there will be blending parameters;
i� 12 and
i+ 32 can be taken as op-
timally weighted averages of two-point central interpolation and two-point fully-upwind extrapolation.

The net fluxes of cellsi�1, i, i+1 andi+2 are affected by the EB. Because only
i� 12 and
i+ 32 allow
for optimization, only two of the four aforementioned net cell-fluxes can be optimized for accuracy:
either the net flux in celli�1 or cell i, for 
i� 12 ; and either the net flux in celli+1 or cell i+2, for 
i+ 32 .

For the accuracy optimizations, Taylor series expansions are used. Doing so, the net flux in celli
cannot be optimized due to the presence of the EB with its discontinuous solution behavior. Hence, the
net flux in celli�1 will be optimized for
i� 12 . Secondly, for
i+ 32 , the net flux in celli +2 will be
optimized. The reason why the net flux in celli+2 is optimized instead of that of celli+1 is explained
at the end of this subsection.



Deriving the three-point upwind-biased interpolation for
i� 12 , in terms of the blending parameter�i� 12 , we get:


i� 12 = 
i�1 + 11 + 2� 1 + �i� 122 (
lEB � 
i�1) + 1� �i� 124 (
i�1 � 
i�2): (7)

Note that for�= 12 , the standard�-scheme is restored from (7). Then writing the modified equation for
cell i�1, introducing successive Taylor series expansions about the pointi�1, and equating the leading
term of the truncation error to zero, we get:�i� 12 = 7� 6�9 + 6� ; �i� 12 2 � 115 ; 79� : (8)

Following the same procedure for
i+ 32 , i.e., taking:


i+ 32 = 
i+1 + 1 + �i+ 324 (
i+2 � 
i+1) + 23� 2� 1� �i+ 324 (
i+1 � 
rEB); (9)

we get the highest accuracy in celli+2, for:�i+ 32 = 7� 6�15� 6� ; �i+ 32 2 �19 ; 715� : (10)�i� 12 and�i+ 32 according to (8) and (10) are well within the standard range[�1; 1℄. They yield the most
accurate net fluxes in cellsi�1 andi+2; we have second-order (spatial) accuracy in these cells, with a
maximum leading-term truncation-error coefficient of�h218 and�h236 , respectively. These are dispersive
terms and they diminish as the EB is in the immediate vicinityof the center of celli. We get third-order
accuracy in the respective cells when the EB is exactly at thecenter, i.e., for� = 12 , �i� 12 = �i+ 32 = 13 .

The final formulae for the special cell-face states that are affected by the presence of an EB, in celli, are summarized, in terms of the location parameter�, as:
i� 12 = 
i�1 + 8(3 + 6�)(3 + 2�)(
lEB � 
i�1) + 1 + 6�18 + 12� (
i�1 � 
i�2); (11a)
i+ 12 = 
rEB + 2� 2�3� 2� (
i+1 � 
rEB); (11b)
i+ 32 = 
i+1 + 11� 6�30� 12� (
i+2 � 
i+1) + 4(9� 6�)(5� 2�)(
i+1 � 
rEB): (11c)

Finally, the reasons why the optimal�i+ 32 is obtained from the highest accuracy of the net flux in
cell i+2, instead of that in celli+1, are the following:� �i+ 32 from the former case is well within the standard�-range[�1; 1℄ ( see (10)), but from the later

case, we get�i+ 32 2 [13 ; 75 ℄.� We get a third-order (spatial) accuracy in celli+2 in the former case for� = 12 (see (10)), but in the
later case, we do not get this for any�.� Noting the solution is discontinuous across an EB, from the former case, we have a dissipative leading-
error term in celli+1, which is the adjacent cell to celli (where the EB is situated), and this makes
the solution near the EB less prone to numerical oscillations. In the later case, however, we get the
leading-error term in the same cell to be dispersive and thismakes the solution near the EB to be more
susceptible to numerical oscillations, numerical oscillations which may be hard to suppress because
construction of a flux limiter for cell facei+ 12 is hard.� In the former case, we get first-order (spatial) accuracy in cell i+1, and second-order accuracy in celli+2; whereas, in the later case, we get second-order accuracy incell i+1, and first-order accuracy in
cell i+2. Therefore, the accuracy deterioration due to the presenceof an EB in celli is confined to the
vicinity of the EB.



3.2 Spatial monotonicity domains and limiters

Recalling Godunov’s work [4], all the linear higher-order fluxes, constructed earlier, may yield wiggles.
And these wiggles may cause the solution
 to be negative. If
 is a physical quantity that should
not become negative (say, density or temperature), this is undesirable. Therefore, a physically positive
quantity should remain positive during the course of the entire solution process. Positivity of
 can
be achieved by carefully constraining or ‘limiting’ the advective fluxes calculated by the scheme. By
limiting the fluxes, they may persist to be first-order accurate in some solution regions. For the cell-face
states that are computed by the standard� = 13 scheme (x 2.2), the standard� = 13 limiter (4) will be
used.

In this section, special limiters will be introduced for thespecial EB-affected cell-face states
i� 12
and
i+ 32 according to formulae (11a) and (11c). For cell facei+ 12 , a regular monotonicity argumentri+ 12 can not be defined, as a regular monitor uses two solution values upstream of cell faces. In this
case, since we do not want to use solution values from the other side of the EB, and therefore not
i, we
have only one upstream solution,
rEB, too little to introduce the regular smoothness monitor. Therefore,
i+ 12 will not be limited.

The formulae for
i� 12 and
i+ 32 in (11) can be rewritten as:


i� 12 = 
i�1 + 12 ~�(~ri� 12 )(
i�1 � 
i�2) and 
i+ 32 = 
i+1 + 13� 2� ~�(~ri+ 32 )(
i+1 � 
rEB); (12a)

where: ~�(~ri� 12 ) = 1 + 6�9 + 6� + 89 + 6� ~ri� 12 and ~�(~ri+ 32 ) = 415� 6� + 11� 6�15� 6� ~ri+ 32 ; (12b)

and where: ~ri� 12 = 21 + 2� 
lEB � 
i�1
i�1 � 
i�2 and ~ri+ 32 = 3� 2�2 
i+2 � 
i+1
i+1 � 
rEB : (12c)

The function~�(~r) will be constrained to yield monotonicity preserving schemes and to define the appro-
priate limiters. The argument~r measures the local monotonicity of the solution. Notice that for � = 12 ,~ri� 12 and~ri+ 32 reduce to the standard equidistant local successive solution-gradient ratios known from
the theory of standard limiters.

To constrain~�(~ri� 12 ), enforcing the monotonicity requirements:
i� 12 � 
i� 32
i�1 � 
i�2 � 0 and

lEB � 
i� 12
lEB � 
i�1 � 0; (13)

we get: 1 + 12 ~�(~ri� 12 )� 12 �(ri� 32 )ri� 32 � 0 and 1� 11 + 2� ~�(~ri� 12 )~ri� 12 � 0 (14)

respectively. The standard limiter�(r) already satisfies1 � 12 �(r)r � 0, 8r. Therefore, the above
(in)equalities reduce to:~�(~ri� 12 ) � 0; 8~ri� 12 and ~�(~ri� 12 ) � (1 + 2�)~ri� 12 ; 8~ri� 12 > 0: (15)

Similarly, to constrain~�(~ri+ 32 ), enforcing the monotonicity requirements:
i+ 32 � 
i+ 12
i+1 � 
rEB � 0 and

i+ 52 � 
i+ 32
i+2 � 
i+1 � 0; (16)



we get as restrictions for~�(~ri+ 32 ):~�(~ri+ 32 ) � �1 and
~�(~ri+ 32 )~ri+ 32 � 2; 8~ri+ 32 : (17)

The (in)equalities (15) and (17) partially define the spatial monotonicity domains for the special
limiter functions~�(~ri� 12 ) and~�(~ri+ 32 ). Upper bounds for both limiters are still to be derived inx 4.2.

4 Time integration

4.1 Temporal discretization

Semi-discrete equation (3), after substituting the appropriate discretizations for the spatial operator, is
compactly written as: d
idt = �uh(
i+ 12 � 
i� 12 ) � F (
): (18)

Equation (18) can be integrated in time, using a variety of explicit and implicit time-integration methods.
Here, only two explicit schemes are considered: the ForwardEuler and RK3b [7] schemes. The later
gives a third-order accuracy in time.

For the Forward Euler method, (18) becomes:
n+1i = 
ni + �F (
n) � 
ni � �(
ni+ 12 � 
ni� 12 ); (19)

where� = u�h is the CFL number, and� the time step. Similarly, for the RK3b scheme, we have:
n+1i = 
ni + 16(R1 +R2 + 4R3); (20a)

where theRj ’s (j=1; 2; 3) are internal vectors that are computed as:R1 = � F (
n); R2 = � F (
n +R1) and R3 = � F (
n + 14R1 + 14R2): (20b)

4.2 Monotonicity condition and time step

Higher-order accurate solutions of time-dependent problems may exhibit under- and over-shoots near
discontinuities, as they evolve in time. The limited numerical flux conditions, as derived inx 3.2, are still
insufficient to guarantee monotonicity during time integration. Harten’s theorem [8] provides additional
conditions that are necessary for the convergence of the fully-discrete solutions to the exact, monotone
solutions. These conditions define the upper bounds for the limiters ~�(~ri� 12 ) and ~�(~ri+ 32 ).

The theorem in [8] states, any consistent scheme for a conservation law written in the conservative
form: 
n+1i = 
ni �D�i� 12 �
ni � 
ni�1�+D+i+ 12 �
ni+1 � 
ni � ; (21)

where the D’s are solution-dependent coefficients, is total-variation diminishing (TVD) if, for alli:D�i+ 12 � 0; (22a)D�i+ 12 +D+i+ 12 � 1: (22b)

To fully constrain the limiters~�(~ri� 12 ) and ~�(~ri+ 32 ), we consider the Forward Euler scheme and
write the fully discrete equations, in the form (21), for cell i�1, and cellsi+1 andi+2, respectively.
After enforcing conditions (22), we then get the bounds of the domains as:

0 � ~�(~ri� 12 ) � 2� � 2; �1 � ~�(~ri+ 32 ) � 3� 2�� � 1 and 4� 2� � ~�(~ri+ 32 )~ri+ 32 � 2: (23)



Note that the above three bounds that contain� follow from the requirement (22b). The other three
bounds (0, �1 and2) follow from the requirement (22a), which is analogous to the monotonicity re-
quirement already considered inx 3.2. Concerning the newly derived�-dependent bounds (2� � 2,3�2�� � 1 and4� 2� ), note that the choice�=1 – which, as is known, is the stability bound for Forward
Euler – yields~�(~ri� 12 )=0 and ~�(~ri+ 32 )= ~ri+ 32 . Hence, with�=1, the second-order accuracy require-

ments~�(~ri� 12 =1)=1 and ~�(~ri+ 32 =1)=1 cannot be satisfied for both limiters.�= 12 is the maximum

value that still allows for~�(~ri+ 32 =1)=1 for �=1.

For the case� = 12 and� < 12 , possible limiters satisfying the requirements (23) are depicted in
Figure 3.

~�
~�

~ri�12
~ri+32

12

2��2

12

2��1

0 14 3� � 72
�2 14 3� � 2

Figure 3: Typical EB-sensitive limiters and the corresponding monotonicity domains for the special
cell-face states
i� 12 (left) and
i+ 32 (right), for� = 12 .

4.3 Local adaptivity in time

Consider the stencil in the(x; t)-plane in Figure 4. The EB is situated in celli at tn in such a way that it
migrates to the next celli+1. Apparently, the solutions
ni and
ni+1 are updated, in Forward Euler, using
the modified cell-face states
ni� 12 , 
ni+ 12 and
ni+ 32 . However, as the EB crosses the cell face atxi+ 12 ,

there is an abrupt change in the state at this face. That is, before the crossing, the state at this cell face is
computed based on the data to the right of the EB; whereas, after the crossing, it is computed based on
the data to the left of the EB. The two updated solutions
n+1i and
n+1i+1 , which are mainly affected by
this particular cell-face state, need to ‘feel’ the reversal, more in particular the abrupt change in
i+ 12 .

xi�1 i i+1 i+2

t

n
n + �
n+1

Figure 4: Stencil for local adaptivity in time. The standard, modified and the intermediate cell-face
states are designated in green, blue, and red, respectively.



Time adaptivity is introduced by first computing the time fraction� at which the EB crosses the cell
face atxi+ 12 , as: � = xi+ 12 + �� xnEBu � ; � 2 (0; 1); (24)

wherexnEB is the location of the EB at time leveltn. Note that the EB is placed at infinitesimal distance� off xi+ 12 , in the direction of the flow. Then, after updating the solution values
ni�1 and
ni to time leveln+�, the intermediate cell-face state
n+�i+ 12 is computed. Finally, the cell-face state
ni+ 12 is recomputed

as the weighted average: 
ni+ 12 := �
ni+ 12 + (1� �)
n+�i+ 12 : (25)

Then using the time-adapted cell-face state, solution updating is continued everywhere with the regular
time step� .

For RK3b, we do not yet resort to the temporal local-adaptivity procedure devised above. We instead
split the regular time step� into smaller time steps, depending on the number of EBs crossing cell faces,
and update the intermediate solutions everywhere. For instance, for a single EB crossing a cell face, we
divide� into two smaller time steps�� and(1� �)� .

5 Numerical examples

We present numerical results to validate the immersed-boundary approach presented in this work. We
take the same data as inx 2.2, i.e., the same initial solutions (2), initial EB locationsx1 = 13 andx2 = 23 ,u = 1, andtmax = 1, on a grid of 20 and 40 cells.

The results obtained, shown in Figure 5, are remarkably accurate. The results show a significant
improvement in resolution, without much computational overhead, over those computed using the stan-
dard methods, Figure 1. For the more discriminating initialsolution (the cosine-cavity), the numerical
results of the limited higher-order upwind-biased schemesare slightly deficient at the peripheries. This
is due to the property of limiters that they clip physically relevant extrema. Apparently, the deficiency
becomes smaller with decreasing mesh width.

6 Conclusion

The essence of the present approach is that moving bodies areembedded in a regular fixed grid and spe-
cific fluxes in the vicinity of the embedded boundary are intelligently computed in such a way that they
accommodate the boundary conditions valid on the moving body. Then, over the majority of the domain,
where we do not have influence of the embedded bodies, we can readily use standard methods on the
underlying regular fixed grid. Excellent results are achieved, without much computational overhead. We
foresee that the numerical methods introduced here can readily be extended to higher-dimensional, more
practical and complicated problems, for instance the unsteady, incompressible Euler and Navier-Stokes
equations.
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(a) On a 20-cell grid
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(b) On a 40-cell grid

Figure 5: Immersed-boundary solutions after one full-period, for the initial solutions (2).Æ: exact
discrete,�: unlimited higher-order upwind-biased with Forward Euler, �: limited higher-order upwind-
biased with Forward Euler,�: unlimited higher-order upwind-biased with RK3b,�: limited higher-order
upwind-biased with RK3b.


